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Magnetic induction by coherent vortex motion

P. Odier1, J.-F. Pinton1,a, and S. Fauve2
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Abstract. We investigate experimentally the advection of a magnetic field by a flow of conducting fluid,
at moderate magnetic Reynolds numbers. More specifically, we study the influence of a large scale intense
vortex on an externally applied field. We show that at large scales the magnetic field lines are distorted
in a way that is consistent with a scenario of magnetic field expulsion by vorticity. Measurements at small
scales show that the magnetic fluctuations are also quite sensitive to the large scale vortex motion.

PACS. 47.27.-i Turbulent flows, convection, and heat transfer – 47.65.+a Magnetohydrodynamics and
electrohyrodynamics

1 Introduction

Magnetohydrodynamics in rotating flows is found in many
instances of earth and planetary sciences [1]. For instance,
a rotating gas cloud could not collapse without the exis-
tence of a magnetic field to remove its angular momentum.
From a fluid mechanics point of view, the governing equa-
tion for the magnetic field [2]:

∂B
∂t

= curl (u×B) + λ∆B, (1)

is very similar to the equation for vorticity, albeit with dif-
ferent boundary conditions. On that basis, analogies have
been proposed between vorticity and magnetic field [5,6].
In equation (1), we call u the velocity of a fluid with per-
mittivity µ and conductivity σ; λ ≡ 1/µσ is the magnetic
diffusivity. The relative amplitude of the induction term
to the dissipative one is given by the magnetic Reynolds
number Rm = UL/λ. In liquid metals, λ is quite large
compared to the fluid’s kinematic viscosity ν. As a result
Rm remains modest, even for quite large Reynolds number
flows.

We consider here the topology and dynamics of B in
the presence of a weak, externally applied field B0. The
reason is that when B0 is small the motion of the fluid is
not modified by the Lorentz force; the magnetic field does
not react back on the flow field. The dynamics of B results
from the combined effects of induction and diffusion (Joule
dissipation). For an incompressible flow, the dynamical
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equation for B can be rewritten as that of a passive vector:

∂B
∂t

+ (u ·∇) B = (B ·∇) u + λ∆B. (2)

Save for the dissipative term, this is the equation of mo-
tion of a material line of fluid, which is both advected and
stretched by the flow. The presence of the stretching term
is of uttermost importance, since at high Rm, it may over-
come Joule dissipation and generate a large scale magnetic
field by amplification of weak initial disturbances. This is
known as the dynamo effect [3]. Magnetic field dynam-
ics is also often considered as being at an intermediate
complexity level in turbulence, between the passive vector
problem and the full vorticity dynamics.

In this work we address experimentally the relation-
ship between vorticity and magnetic field. Specifically, we
study how a strong vortex acts on an externally applied
field, initially uniform. The velocity gradients generate
an induced component which modifies the magnetic field
topology and fluctuations. The experimental flow is pro-
duced in the gap between coaxial disks and the conducting
fluid is gallium. The results of measurements in the turbu-
lent, counter-rotating case have been reported in [4]. We
concentrate here on the corotating case where the flow is
dominated by the presence of a strong large scale vortex.

2 Experimental set-up and flow
characteristics

Our experimental setup is schematically shown in Fig-
ure 1. The flow belongs to the so-called von Kármán ge-
ometry [9]. Two 11 kW ac-motors are used to drive rugose
disks (they bear an etched pattern in the form of squares
1 mm thick) of radius R = 9 cm at a constant rotation rate
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Fig. 1. Experimental setup and orientation conventions: the z-axis is parallel to the rotation axis of the motors and the x-axis
is parallel to the axis of the transverse Helmoltz coils.

Table 1. Main physical properties of liquid gallium.

Heat capacity [J kg−1 K−1] C = 3.847 × 102

Density ρ = 6.09

Viscosity [m2 s−1] η = 3× 10−7

Thermal conductivity [W m−1 K−1] k = 29.8

Electrical conductivity [Ω−1 m−1] σ = 3.7× 106

using a tachymetry feed-back loop, with a stability better
than 0.1%. The disks are corotating with rotation rates
which can be adjusted between 10 and 50 Hz (3 000 rpm).
They are set at a distanceH = 10 cm apart. The enclosing
cylindrical vessel, with inner radius R = 10 cm and inner
height 20 cm, has a volume of 5.5 liters. It is filled with
liquid gallium chosen for its high electrical conductivity;
its main physical properties are recalled in Table 1. The
flow is cooled using controled water circulators.

We perform magnetic measurements in the following
manner: two pairs of Helmholtz coils are set to produce
an external field B0 up to 20 gauss, either parallel or per-
pendicular to the rotation axis, i.e. aligned with the z− or
x−axis (see Fig. 1). The field is then recorded inside the
vessel using directional Hall probes with a Bell 9905 gauss-
meter; the spatial resolution is 3 mm, with a frequency
range of 50 kHz in AC mode or 400 Hz in DC mode. The
resolution in time of the measurement is in fact limited
by the spatial extend of the probe: with typical velocities
of the order of 12 m/s (the disks rim speed) and a probe
width of 3 mm, one expects a cut-off at about 4 kHz. Pres-
sure measurements are made with a 5 mm PCBH112A21
piezoelectric transducer, mounted flush with the lateral
wall, in the mid-plane between the disks. It is acceleration-
compensated and has a low frequency cut-off at −3 dB
equal to 50 mHz; its rise-time is 1 ms. Data are digitized
using a 16 bits acquisition card in a PC computer.

The integral kinematic and magnetic Reynolds num-
bers of the flow are defined as: Re = 2πR2Ω/ν and Rm =
2πµ0σR

2Ω. In typical runs Re ∼ 106 and Rm ∼ 10. In
the case of the confined corotating von Kármán flow, our
previous studies using water as a working fluid have shown
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Fig. 2. Evolution of vertical induced component by with the
discs rotation rates, for B0x = 17 G, for y = 5 cm (4), 7 cm (�),
9 cm (�) and inside the steel container (◦).

that when the disks rotation rates are equal rates a strong
axial vortex is formed [10].

3 Results

3.1 Large scale topology

Consider the case of an externally applied field B0, uni-
form and parallel to the x-direction. We observe that the
swirling motion creates a component in the y-direction,
whose magnitude is proportional both to the intensity of
the applied field and to the rotation rate of the vortex.
We have checked that the induced component by is pro-
portional to the applied field B0. Figure 2 shows its varia-
tion with Ω, measured at different depths inside the flow.
One observes a steady increase of by with Ω. In the limit
of small magnetic Reynolds numbers, this can be under-
stood as follows. Since the magnetic diffusivity is orders
of magnitude larger than the kinematic viscosity, the in-
duced field b adiabatically follows u. In this “quasistatic”
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Fig. 3. (a) Profile of total magnetic field component Bx par-
allel to the applied field (B0x), for Rm = 0(◦), Rm = 3(∗),
Rm = 6(+), Rm = 9(×). (b) Corresponding simulated pro-
files, in the case of a 2D vortex in solid body rotation.

approximation [12,13], equation (2) yields to leading
order:

λ∆b ≈ −(B0 ·∇)u, (3)

that is an induced field proportional to Rm. In the ge-
ometry discussed here, one has λ∆by ≈ −B0∂xuy, or if
we assume an axisymetric velocity field, λ∆by ≈ −B0ωz,
where ω is the vorticity. From that relationship follows the
linearity of by with both the applied field and the discs ro-
tation rate (the vorticity is directly proportional to Ω). It
also shows the particular role played by the vorticity in
the generation of the induced magnetic field. However it
is assumed in equation (3) that the induced field is much
smaller than the applied one. It is obviously not the case
here; Figure 2 shows that the induced component can be
of the order of magnitude of the applied field! In addi-
tion, we observe that the variation by(Ω) is not linear, in
particular in the vicinity of the vortex core.

One can also view the creation of induced field as being
the result of the circulation of induced currents. If one ‘un-
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Fig. 4. Measured and computed Bx profiles, in reduced units.

curls’ equation (1) in a stationary context, one obtains the
induced current, whose main contribution is j ∼ σ(u×B0).
That is, the large scale rotation produces mainly a current
aligned with the axis of rotation (z-axis) that circulates in
one direction in one half of the cylinder and in the other in
the other half. These currents generate a transverse mag-
netic field, parallel to the y-axis. Note that if the direction
of B0 is reversed, so is j and hence by: the phenomenon is
actually a consequence of the advection of the magnetic
field lines by the fluid motion.

The influence of plane differential rotation on an ini-
tialy uniformed field has been investigated analytically
and numerically by several authors [14,7,6]. They have
shown that at the onset of motion the magnetic field lines
are distorted and stretched; the magnetic field inside the
vortex increases until diffusion acts and leads to a steady
states where the field is actually reduced inside the vortex.
This effect is known as the expulsion of magnetic field
from eddies. The duration τ of the transient regime is of
the order of the vortex turnover time, too fast to be re-
solved with precision in our experiment1. However we can
test the predictions on the steady state. Figure 3a shows
measurements of the magnetic field component parallel to
the applied field for several values of the discs rotation
rate. The profile is obtained by displacement of the Hall
probe along the y-axis. We observe that inside the vortex
core, Bx decreases as Rm increases. For the maximum
Reynolds number of the experiment, it is reduced to 60%
of its original value on the axis. The measurements can be
compared to analytical solutions in the case of a 2D vortex
in solid body rotation – cf. Moffatt [6], pp. 54-58. They
are shown in Figure 3b, where we have chosen a vortex
core size equal to 5 cm. One can see that there is a good
agreement for the reduction of the field on the axis, for a
given value of the vortex rotation rate and core size. Note
that in order to compare the magnetic Reynolds numbers
in the experiment and in the computation, one must re-
calculate the experimental Rm based on the vortex core

1 There is also a debate on its dependence with Rm:
Parker [14] and Weiss [7] obtain τ ∼ O(Rm1/3), while
Moffatt derives τ ∼ O(Rm1/2), a difference that would be hard
to settle in a low Rm experiment such as ours.
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Fig. 5. (a) Orientation of field lines, calculated from Bx and By measurements; (b) Computed field lines, from [7] Figure 10c,
at Rm = 20. The measurement in (a) corresponds to the highlighted slab in the calculated profile in (b).

size and turnover time; one obtains Rm′ = 1.1, 2.2, 3.3.
For a complete description of the details of the profiles,
one would have to know the actual vorticity distribution
in the experiment. In fact, the difference with the com-
puted profile provides information about the flow vortic-
ity distribution. Figure 4 shows the magnetic field profiles
in reduced units (B −Bmin)/(Bmax −Bmin). We first ob-
serve that at all Rm the Bx-profiles are self similar as
revealed by the collapse of the measurement in reduced
units. From an hydrodynamics point of view, it indicates
that as the rotation rate of the disks increase, the mag-
nitude of vorticity increases but its distribution remains
unchanged, in particular the core size. This results con-
firms independent studies [15,11] which have shown that
the vorticity profile in this flow is set by the geometry (in
particular the shape of the driving disks) and does not
vary with the imposed rotation rate. Secondly, we note
that there is a good agreement between the experimen-
tal profile and the calculated one, showing that a vor-
tex core in solid body rotation is an adequate model for
the vorticity distribution of this flow. The measurements
in the x and y directions can be put together to obtain
the distortion of the initial field lines. This is drawn in
Figure 5, again with the model flow picture for compar-
ison; the experimental measurements shown in Figure 5a
corresponds to a thin slab in a full two-dimensional profile
such as the calculated one shown in Figure 5b. We observe
the predicted magnetic lines twisted by vorticity.

If one further assumes that the flow is bidimensional
near the measurement zone we can evaluate the local mag-
netic energy as EB ∼

(
B2
x +B2

y

)
/2µ0 (we have checked

that Bz remains small: Bz < 0.2 G, for B0 = 17 G). The
result is given in Figure 6: we observe a decrease inside
the vortex core region, but a significant increase outside.
It is again linked to the distortion of the field lines by the
swirling fluid motion: initially equally spaced field lines
are expelled from the vortex core and brought together
outside, as illustrated in Figure 5b.
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0(◦), Rm = 3(∗), Rm = 6(+), Rm = 9(×).

3.2 Fluctuations

We now consider the fluctuations of the magnetic field. A
first remark is that the large scales fluctuations in the mag-
netic field follow the evolution of the flow. This is shown –
Figure 7 – using simultaneous measurements of magnetic
field and pressure fluctuations at the flow wall [16]. As ob-
served in [10], the rotation of the disks generate a vortex
at the same rotation rate Ω which can be observed si-
multaneously in the pressure and magnetic measurements
(Figs. 7a and 7b). Such frequency lines are related to
the vortex motion since they are not observed when the
disks are counter-rotating at the same rate Ω. In addi-
tion, we note the strong coherence between the pressure
and magnetic variations – Figure 7c – as further evidence
of correlation between vorticity and dynamics of magnetic
induction.
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Fig. 7. Corotating flow at Ω = 20 Hz. (a) Power spectral density of pressure fluctuations at the flow wall. (b) Power spectral
density of magnetic field measured 1 cm inside the flow. (c) Coherence of magnetic and pressure signals.
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Fig. 8. Power spectra of magnetic fluctuations. The probe is located in the mid plane between the disks and 1 cm inside the
vessel. The applied is in the x direction. The measured component is in the x direction in (a) and along the z direction in (b).

Another observation concerns the turbulent fluctua-
tions. They are present, because as already mentioned
the flow is quite turbulent. Due to the small kinematic
viscosity of gallium, the integral Reynolds number Re =
2πR2Ω/η is of the order of 106 in this flow. Several stud-
ies using air or water as working fluids have shown that
when the disks are counter-rotating, a very intense, al-
most homogeneous turbulence is generated [17]. As a re-
sults, and in agreement with Kolmogorov’s scaling, our
measurements in the counter-rotating case have shown

that the magnetic spectra display an inertial range where
B2(ν) ∝ ν−11/3 (here, ν is the time frequency) [4]. In the
corotating case, turbulent fluctuations are superimposed
to the strong axial vorticity.

Figure 8 shows the spectra of magnetic fluctuations,
for an applied field in the x-direction, the measurements
being made in the same x direction (8a) or along the axis z
of rotation (8b). Peaks corresponding to the rotation rate
of the disks are observed at low frequencies. At higher
frequencies, one observes a strong anisotropy: the bx
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component follows a decrease with a ν−11/3 behaviour as
in homogeneous turbulence, but the bz component has a
much steeper fall-off, that does not follow a power law. In
addition in this case, energetic fluctuations exist at much
higher frequencies: in Figure 8, bz has a roughly constant
energy content up to 200 Hz (at Ω = 30 Hz, for exam-
ple) whereas at that frequency the fluctuations in bx are
one order of magnitude smaller. The anisotropy of the
large scale flow is thus observed on the velocity gradients
(which produce the magnetic induction) at all scales. This
is consistent with direct local measurements of the veloc-
ity field in similar experiments in air where we have shown
that the presence of the vortex influences the turbulent
velocity fluctuations across the entire range of scales of
turbulent eddies [11].

4 Concluding remarks

The measurements reported in the first section show
that, from a stationary point of view, there is a strong
(anti)correlation between B and ω: regions of high vortic-
ity tend to expel a transverse magnetic field. Our measure-
ments are in agreement with the scenarios and calculations
proposed by Parker, Weiss and Moffat [14,7,6]. This cor-
relation is also a dynamical one and we observe that the
presence of vorticy introduces a strong anisotropy in the
fluctuations of the magnetic field at all scales. It may be
of importance in MHD turbulence and deserves further
investigations.
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